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The problem of unloading wave propag?tion in a cyfindrioar, semi-inffmte, 
elastic-pia8tic rod is considered [l] sod the asymptotic pro~ertitr of this 
problem are stndied fa large valued of time and large dWancer from the end 
of the rod. It is assumed that the curve exhibiting the ml&en between the 
~bttr and strain under loading has an initial l&rear se&on while the non&ear 
~~~~~~~~~~v~ey~~~ axi& ~un~~g~~ 
along hncr paraliel to the fnitfat linear section of the kx&ng curye. By the 
CWiition of the pablum under condderatfon, the normal &es8 at the end of 
the rod grows from zero to the maximum value exceeding the proportionality 
limit us during a cert& time or in&anWeotuly, and then decrea#ea mono- 
ton&ally to some value pe 23 0 in a finite or infinite time. The ca#3at pa > 
0~ PI - %.* and PS < os are exam&d. 

l. Let t be the time, h the Lagrange coordinate representing the distance bet- 
ween&e rod crow section and the bare normal to the rod lateral surface at the initial 
ttme t = 0, % the velocity, Q the stress [technical), * e the strain, and pa the 
initial density of the rod material, 

The dependence u (8) acctsding to Which loading is reaUcd, ia linear in the in- 
terval 0 < 8 \< 8, and nonlinear for e >a,. For 0 \< 8 *;5 es wehavea (8) 

= E (4?$ = con&# L the elastic lzlodub), while for e > 8, the fimctton a (8) 
pOrrerr+r the prOpertieS 0 < 0’ (8) < & - 00 < Q” (8) < 0. The right and 
left derivatives of the function u (a) are equal at the point a e a, if the order of 
the derivatives is n - 1 or lower, and differ if the order of the derivatives is n, 

m>2, - 00 ( a@) (es + 0) < 0. Unloading occurs according to the linear law 

u-u = E (e - E*), where a, = <I* (h), 8+ = 8, (h) are the maximal 
stress an! strain for the element noted by the coordinate h. 

The normal s&as at the end of the rod h = 0 varies according to the known 

law a = P (4. The function p ft) grows monotonically from zero to the max- 
imum value 6, > oS (u, = E&J in the interval 0 <.< z , and then decrw- 
es mouotomcauy, where it either tends to a certain value PI > 0 a~ t * Q), or 
becomes equal to ps > 0 for a certain finite value of the argument. after which 
p (t) 3 ps. The normal strsr at the end of the rod can grow from zero to %I Want- 
aneously (2’ = 0). 

we have the rest domain 0, the loading domain 1 z and the unloading domain 
2 in the ht plane (Fig. 11. The line h = g& (go = v=j is the boundary 

between the rest and loading domains, while the unloading line h = T (t) is the 
boundary between the loading and unloading domains. which emergea from the Point 
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Asymptotic behavior of an unloading wave 155 

with the coordinates h = 0, t = r . 

The simple wave 

whereF (a)is the inverse function, in the interval 0 6 (r < (T,,, , to the function 
p (t) considered in the interval 0 < t < -c , is the solution in the loading dom- 
ain. If T = 0, then F s 0 . In the unloading domain we have 

- u = fi (a) + fs (B) (1. 2) 

u 1 pogo = f1 (a) - fa (B) 

where fi (a) and fs (p) are functions of 

the charactersitic variables cc = g,t -h 

and $ = g,t + h. 
On the unloading line a, g and theoth- 

er quantities can be considered functions of 

the variable t. Let a* (tl, g* (t) , etc., 

or for brevity, simply a*, g*,. . . . den- 
ote these dependences. 

PEo R Using the known inequalities Cp’ (t) > 
Fig. 1 g* (t), cp’ (t) < go C21, we arrive at 

the deduction that (p (t), p* (t) and a* 
(t) are monotonically increasing functions, where cp (t) and b* (t) are strictly mon- 
otonically increasing functions. As t --f 00 we have cp (t) + oo and /3* (t) --f 

Since p* (t) is a strictly monotonic function, then its strictly monotonic in- 

Zse function t = x (fl) exists. 
Differentiating the following equation with respect to the variable t 

g, (t) = g* it - F (a*)1 
( 1.3) 

and then using the inequality cp’ (t) > g* (t), we see that da*Idt\< 0, 
de* I dt < 0, dg* I dt > 0. Therefore, the functions IJ* (t) and a* (t) are 

monotonically decreasing while g* (t) is a monotonically increasing function. The 

limits of the functions u* (t), E* (t) and g* (t) as t -+ oo will be denoted by 
CT C?, E,, g, , respectively. It is shown in [3,4] that for any t from the band 

7 < t < 00 the inequality U* (t) > Us is satisfied. Hence oa > CJ~. If ue = 

U then o* (t) > U, for any t from the band z < t < co. It will be shown in 
&t. 2 that the function u* (t) possesses such a property even for (J, > (J, l 

Let us introduce the functions 

J! (B) = (J* 1% @)I7 A (B) = 9 (B> - 0, 

It is clear that $ (p*) = u* (t), A @*) zz o* (t) - u,. As /3 --t cm we 
have J, (fJ) 3 (Jet A (B) * 0. 

From the continuity condition for the stress and velocity on the unloading line we 
obtain o* o* 

fIta*) 1 =. 

2Po& 
Ii *do, 
5 

fz (/3*) = & 5 y da 
0 0 
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It can therefore be written that 
Oe 

fr(a*) - &)I&, -- [S go+ ‘da+ g !qQl(B’) +o(A(p))], t-t- 00 (ls4) 
e 

0 

g+du +y e A(p) + o(lqP,,], t-+ CO (1.5) 

The representation which we shall use for (Je > as 

(1.6) 

follows from the last formula. 
when o,= % we analogously obtain the reprswntation 

fa (B) = & van @I + em @I A” @)I 

e,(&-+o for p-+=5 k,= - 
g@-1) (be + 0) 

4 go 
= 

(1.7) 

G@) (e, + 0) 
- 

nl zpo*gom ’ k>O 

2, The main results of thla invertigation result from the momentum equation writ- 
ten in the integral form 

t 

s p (t) dt = Ir (t) + Ia (4 
0 

(2.1) 

i3rt v(t) 

h(t)=-po j udh, I%(t)=--pPo 1 udh 
cpw 0 

We convert the terms Ix (t) and I, (t) in the right side of this equation. 

Let us consider the first term. &cause of integration by parts and subasquent app- 

lication of (1.1) and (1.3). we obtain 

5 F(u)da + S,(t) + S,(t) 
0 

da 

-7 
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where 

81 (0 - (n - 1) k&I” (j3*), S, (t) - F (us) A (fi*), t + 00 (5’. 2) 

(a, = 0,) 

S, (t) - Z,tAa (fP), S, (t) - F (a&A (/3*), t -+ 00 (2.3) 

g’ (Q Q’(e,) 
12=-x-=-- 4P& 1 to, > QJ 

I? L5 

We turn to the second term. On the basis of (1.2) and the boundary condition at the 

end of the rod we represent the integrand as follows: 

i-h= 
- & P (f) - f~ (a) - fa (B) 

After the conversion we obtain 

1s 0) = PO fj fa (8 dS + P V) dt 
a* a*le 

Let us introduce the function 

o(t)= i@-_p.)dt+p@)do 

0 0 

for which the estimate o (t) = o (t), t + 00 is evident. 
Applying this function and taking account of the expressions obtained for 

and I, (t), we represent (2.1) in the form 
I* tt1 

( 2.4) 

fJ* 

po6f.odS-t &(t)+W)+A, 
Q: 

A = - \ WW 
pe 

Furthermore, if the representation (1.6) is used, we will have 

0 (a* /go) = (ue - Pe) a*/& + fir tt) + &. (0 + & (t) + Sa (0 + A 

For g,z < p < 00 the function A 
Hence, the inequality 

fJ* r 

@) is positive and monotonically decreasing, 

can be written, whereupon we have the estimates Sr (0 = o W, W, 8, (0 = 
0 (RI W)c t + 00. Taking theseestimates into account, we obtain the following 

equation for thk’case oB > 6, 
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60 (a* / go) = (a, - Pa) a* / go + 11 + I- @)I A, (t) + R, Ct) + A ‘2. ‘) 
r (t) -+ 0 for t--t 00 

We hence see here that by applying the momentum equation in integral form the fun- 
ction CT* (t) posscgles the following property mentioned in Sect. 1 for not only o, = 
U, but also for (J, > (J, : For any t from the range II < t < oo the strict 

inequality u* (t) > a, is satisfied. 
Let us admit that the equality o* (Q) * oe is achieved for some finite value of 

the time tl . Since the function U* ft) is monotonic, then o* (t) G 00 fort > ti. 
But then a ts > ti can be mentioned arch that for t > ts in the unloading domain 

u (h, t) m o,, e (h, t), r;r 8,. and g (h, t) 5 ge. Without difficulty we then reduce 
the momentum equa!ion (2.1) for any t > Q to the condition a, (t) = 0, which can 
be satisfied only in the trivial case pa = 0,. 

If a, = u,, then by using the representation (3,7), we reduce ( 2.4) to the form 

0 (a* I 80) = (0, - Pe) a* / go + Q1 (0 + Qz (0 + $1 (0 + (2.6) 

S, (t) -I- A 

Later, the cases pe > B,, pc = us and pt < 0, are examined individually, 

3. The case Pe > Us* Let us bow fint t&at thb strict inequality o, > 
(J, holds iu this case. To do this we turn to the evident reiationship 

a*02W) 

Lo* (tnz) - cJ* @NM - 
\ 

T da = 2 [p @A) - u* &v)] (3.11 

Ir*< Nl 

when tN, tM and tA are ordinal of ihe intersections of the unloading lint and the 
t ax& with f&e straight I&S u = con& and $ = can&, whose segments AN 

and AM are shown in the sketch. The left side of (3.1) is not positive since u* (TV) 
> o* (TV) and we have g* (t) ( g, for z < t < co,. Since p @A) > PB and 

Pe =u,+S@>O), thentheinequality u*(t~)>0;+6 should be satis- 
fied. We have 6* (tN) -+ u, as TV + oo . Talrfng this last inequality into acc- 
ount, we arrive at the inequality u, > CT, + 6, and hence to the strict imwatity 
ue > ua, QED* 

Since g, # go, then the asymptotic equality CC* (t) N (go - gc) t, t - 
00 can be written and theu the @mate R, (t) = o (R, (t)), t --t 00 Can be 
obtained. Equation (2.5) can be recked to the form 

0 (a* / g,) = (a, - pe) a* 1 go + II + ~1 (t)l RI (t) + A 

r1 0) + 0 for f-o0 

of the left and right sides of this equation are divided by t and t is then allowed 
to become infiuite, we arrive at the important eqiuality o, =L: PI= 

Let us insert the function 
h (8) = PA (iv (3.2) 
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into the expression defining R, (t), and apply the integral theorem of the mean. 
Moreover, taking into account the equali u, = pe, -we obtain 

CC* 
o- = 

( ) 
go-g* 

g0 
2gog h. (f) II + rl WI In $ + A, a* < 5 < B* 

e 

A -+ 0, rl (t) + 0 for t-+00 

Let 
fi;a(t)=C, C<CYO 
_, 

Then it follows from (3.3) that 

YFlh (C) = D, D - 
2&&C 

. (go - &?,I 1x.I h?o + geMgo - g&l 

(3.3) 

(3.4) 

(3.5) 

This result permits us to arrive at the conclusion that the unloading line for pe > 

u, and compliance with condition (3.4), has the oblique asymptote 

h = get - b, b = gZ tie) + 2&g@ f (go + ge) (3, 6) 

The quantity C is the area of the domain bounded by the line segments 0 = 
p (t)and o =pe and located to the right of the intersection of these lines (Fig. 1). 
If c = 06, there is no asymptote. 

On the basis of (1.41, (1.61, (3.21, the asymptotic equality (g, - g,) p* - (g, 

+ &A a*, t --f 00 and (3.51, we have 

According to the first formula in (1.2) and the formulas just obtained for fl (a) 
and fi (fi), the velocity of the end of the rod varies according to the asymptotic law 

PII 

u(O,t)-+j $- 
0 

&($--+-)+, t-400 

Using (3.21, the asymptotic equality g&* (t) - (go + ga) cp (t), t 3 00 , 
and (3.5)‘ we obtain 

o*(h)-_p,+&-l, 
c h 

k.-,oo 

It should be noted that the reduced formulas are valid even for oS = 0, i. e. , when 
the curve mapping the loading law o (e) has no initial linear section, where the slope 
of the parallel lines to the strain axis, by which unloading is realized, can also diff- 
er from the slope of the curve u (e) at the origin to this same axis. If equality of 
the slopes mentioned is conserved, the asymptotic formulas obtained are valid only for 

pe > 0 ; if such an equality is not conserved, and the former slope is greater than the 
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latter, then the stress at the end of the rod can even decrease to zero. For instance, 
assuming Pe-- 0 and letttng go tend-to iri&nity, uie arrive at the asymptotic of the 
solution of the unloading wave problem examined in detail in Es], according to whose 
assumption the relation between the stress and strain is nominear during the loading but 
the unloading of each element of the rod occurs under invariant strain, 

4. The case pe = (3,. Firstly, it is easy to see by a proof by contradiction 
that 6, = cr, inthiscase. 

Furthermore, let us show that a* (t) - oo as t --t 00 in the case under con- 
sideration, To do &is, we return to the figure and let the point N tend to i&inity 
along the unloading line. If it is assnmed that lim a* (TV) ( 00 as TV --t 00, 
thenaccordingto the equality cc* (QJ) = fi* (tM), we wiIl have lim tM ( oo as 
tN -+ co. But then, the inequality lim p (tA) ( u,, which contradicts the initial 

assumption Pe = 6, I follows from (3.1). The second possibility CC* (TV) 3 00 as 
tN --f cm should tfierefore be realized. 

This result permits arriving ss the conclusion that the unloading line has no asym- 
ptote and permits writing the asymptotic equality 

fg, -gB”)t-cx , * t-m (4.1) 

and obtainfng the estimate Qs (t) = o (Qi (t)), t --f co. 
The asymptotic equality 

~~g~tA~-~ (p) - CL*, t 4 M (4.21 

follows from the asymptotic equality (4.1) in an obvious manner, and can be used to 
obtain the estimate .I& (t) = o (5, (t)), t 4 00. 

Taking account of the esUmat.es obtained and aIao of the equality PC = o,, we 
reduce (2.6) to the form 

o (a* / g,) = 11 + q1 WI Or tt) + [i + 8, (Ql S, 0) -I- A (4. J) 

A -+ 0, ql (t) -+ 0, ,rl (t) + 0 for t + 00 

Let us introduce the functton 
Y @) = PA” @I In (B / 4 (4.4) 

into the co~~rati~, where L is a constant with the dirn~~~ty of a length. 
If this function is used and the integral theorem of the moan is applied, then we can 

On the basis of(4.4), (4.2). the asymptotic ecluaiity /3* - 2got,. t-boo* 
and the relations&p resulting from (2.2) and (2.4) 

(4.61 

wehavethecxprcda 

1 1 +nk 2% Sl (t) Ii + 0 tw r(tf=y II 
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which is useful for the investigation of the function p (t) in (4.5). 
The subsequent analysis will be performed under the condition (3.4). Let us proc- 

eed to determine the limit of the function Y (fJ) as /3 + 00 under this condition, 
by assuming it to exist. 

Letusassumethat Y(p)+ 00 as /3+ 00. Since condition (3.4) requires that 
the non-negative functions Q1 (t) and sr (1) be bounded as t--t oo, we then 
obtain p, (t) + 1 as t -+ 00 from (4.5). but another result from (4.7J: p (t) + n 
as t + 00, which indicates the erroneousness of the assumption made relative to 

the behavior of the function Y (j3) at infinity. 
Let Y((B)+Oas j3+00. Then it follows from (4. 61, (4.3) and (4. 5) that 

S, (t) -+ 0, Q1 (t) --t C, p (t) + oo as t -+ co. On the other hand, on the basis 
of the asymptotic equality (4.2) and the identity (a* / fi*) E (@* / L)v(t), v (t) = 

p-r (t) - 1 7 the general formula 

A” @*.) _ (+)ni(n-i) (,)“(t)l(n--lI , t 3 o. 

can be established. Since the function p (t) grows without limit as r + 00 accord- 
ing to the assumption made, then by using this formula, the estimate [A (V) 1 PO 
go21 ” <(@*/ L)-(I+%) can be obtained for sufficiently large t , where x is a positive 
constant satisfying the condition x < 1 i (n - 1) , For sufficiently large fi we the- 
refore have the estimate /A @) / pogo21n < (/3 / L)-(r+@. However, if this estim- 
ate is valid, then we will have Qr (t) + 0 as t --+ 00 which contradicts the 
deduction obtained above the behavior of the function Q1 (t) at infinity. 

Thus, the limit of the function Y (/I) can only differ from zero by a finite quant- 
itywhen p-00. In the presence of this limit, the following passage to the limit 
are satisfied: lim S, (t) = 0, lim Q1 (t) = C, and lim p (t) = n as t + oo. 
Using the relationship (4.51, we obtain 

;LtY (5) = * 
k,lnn 

A number of required asymptotic formulas 

fr (a) - - 
da/C 1 

POET0 p,lna aln(a/L)’ a4 3o 

fs(B)-- * P-+m polnn Bln@/L) ’ 

cp @> - got - ~h!zo ($iT>,n-l)‘n( Iln(got!/L)In-l ),'* 9 t * O" 

u(ov t, - - & - pogo2Em t ln&,L) ’ t-00 

a*@)--a, + 
[ 

got 1 
k,lnn hln(h/L) 1 1/n 

, h+oo 

can now be written without difficulty, 
Setting n = 2 and ub = 0, we arrive at formulas known from [S]. 

5. T h e case pe < IS,. As in the preceding case CT, = a,. However, in 
contrast to the preceding case, the unloading line always has the asymptote h = got 

- b. If the opposite is assumed, then a* (tjv) --t 00 as tN --t 00 (Fig, 11, 
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and therefore, tA -j. 00 and tM -+ 00 aho. But then we arrive at the following 
contradictory result: the left tide of the equality (3.1) tends to zero as tpf -4- 00 
and the right side to a limit different from zero. The existence of the asymptote for 
Pe = 0 wa detected in (31, as is known. Attention was turned in (‘71 to the fact of 

the existence of an asymptote under the condition pe ( (J, . 
Since 

go - g* - 2g@ / $*, B = b - g,F (as), t--t OQ 

in the care under consideration, then by using (1.7) we obtain the asymptotic represent- 
ation 

83 00 

The representation established in [4] for n = 2 and pa = 0 hence results as a 
particular case. 

The following asymptotic formu& 

mt) + *p(r)- - [A ( n& ).‘(“‘] (+y-) , t4oo 

~*wJo,+(-&+y-, h-*ca 

evidently also hold for any pe < 0, . 
It is not porrfble to determine the quantity b as a result of an asymptotic invtstiga- 

ffon, however, an inequality useful in e&mating the quantity b can be indicated. To 
do this, we pas to the limit in (2.4) as t + 00 but fiat setting Q, = cr, . Since 
we have SI (t) +O, &(t)+O,a*(t)+b,~*(t)+~ i~ t-+oo, thenin the 
limit we obtain ~ 

0-x 
( > go (08 - Pd) + +jf.~~)d~-~ QWu 

b Pi 

Taking into account that the fimction fa (p) takes on positive valuer for go7 < 
/3 ( 00 and b > go% we arrive at the desired inequality 
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